Contact
Tel:+86 13015583380
Sales hot line ( 24 hours  service):+86 13015583380

E-Mail: firstfurnace@gmail.com

whatsapp:+86 13015583380

Adress: Luoxin Industrial Park, Luoyang, Henan
  • Products
  • Gear hardening machine

    Large diameter steel pipe quen

    Piston rod quenching and tempe

    Hand-held induction heater

    Grinding rod quenching and tem

    Induction forging machine

    induction heating machine 

    Induction heater

    High frequency induction heate

    Super audio induction heating

    Super audio induction heating

    Guideway quenching integrated

    Quenching equipment for machin

    Round steel end heating furnac

    Steel pipe heat treatment prod

    Square steel quenching and tem

    Sucker rod quenching and tempe

    Thickened petroleum steel pipe

    Round steel quenching and temp

    Steel pipe quenching and tempe

    Steel plate quenching and temp

    Induction Hardening Machine&nb

    Flywheel ring gear high freque

    Oil drill pipe quenching and t

    Iron induction furnace

    Aluminum melting furnace

    Copper melting furnace

    Small steel melting furnace

    Electric furnace technical information£¨¼¼Êõ£©
        

    The energy loss caused by the intermediate frequency furnace coil is as high as 16%. How to reduce it?

    Depending on the installed power density and the melting practice, the thermal efficiency of the induction furnace can exceed 80 %, but usually it is in the range of 60 % to 78 %.

    Induction furnaces are normally kept open during the entire melting process where the workers engage in slag skimming and monitoring of the quality of molten bath. However, this leads to significant heat loss and hence special covers or lids need to be installed for reducing heat losses. In particular, reducing the time the lid is kept open while melting, can lead to substantial energy savings.

    The theoretical requirement of energy for melting iron is only 340 kWh per ton whereas the actual power required is around 600 kWh. This difference is due to two factors namely (i) inherent in the principle of melting in an induction furnace which include the inefficiency in electrical bus bar losses, eddy current losses, refractory losses,  and cooling water losses etc., and (ii) the operational losses which are largely due to unnecessary and excessive holding of liquid steel in the induction furnace.

    Induction furnace equipment should be placed with minimum distance between each equipment to reduce wiring losses. To reduce the wiring losses remarkably, it is essential to shorten the distance between furnace body and power factor improving capacitor as very large current flows between them.

    Efficiency of induction furnace is expressed as a total, deducting electrical and heat transfer losses. Typical heat balance diagram of high and medium frequency crucible type induction furnace is shown in Fig. 1. Electrical losses consist in transformer, frequency converter, condenser, wiring, cable, coil, etc. Loss in coil is essential factor, on which the furnace capacity depends. Heat losses in induction furnace consist of conduction loss of heat escaping from furnace wall to coil side, radiation loss of heat released from melt surface, absorption loss in ring hood, slag melting loss, etc. The coils of furnace are water cooled which also results in heat loss. Heat efficiency of high and medium frequency furnaces (60 % ¨C 78 %) is slightly larger than that of low frequency furnace (58 % ¨C 71 %).

     

    Fig 1 Typical heat balance diagram of crucible induction furnac

     


    Copyright© 2007-2013 songdao Electric furnace manufacturing Co,.Ltd All Rights Reserved
    Tel:+86 13015583380 Sales hot line ( 24 hours service):+86 13015583380
    E-Mail:firstfurnace@gmail.com
    Adress: Luoxin Industrial Park, Luoyang, Henan